Possible role of bradykinin on stimulus-secretion coupling in adrenal chromaffin cells.
نویسندگان
چکیده
Nonapeptide bradykinin is known to be a central nervous system neurotransmitter and to play a role in regulation of neuronal function. However, few details are known of the function of its peptide on stimulus-secretion coupling in neuronal cells. In this article, the role of bradykinin on catecholamine biosynthesis, secretion and Ca2+ movement in adrenal chromaffin cells as a model for catecholamine-containing neurons are examined. Bradykinin receptors are classified as B1 and B2 receptor subtypes. These receptors are present on the adrenal chromaffin cell membrane. Bradykinin increases the influx of Ca2+ and the turnover of phosphoinositide through the stimulation of bradykinin B2 receptor. The secretion of catecholamine from the cells is initiated by the raise of [Ca2+]i. An increase in [Ca2+]i and production of diacylglycerol stimulate the activation of calcium-dependent protein kinases. These kinases stimulate the activation of tyrosine hydroxylase, a rate-limiting enzyme in the biosynthesis of catecholamine. Otherwise, bradykinin increases Ca2+ efflux from the cells through the stimulation of the bradykinin-B2 receptor. This action may be explained by an extracellular Na(+)-dependent mechanism, probably through acceleration of Na+/Ca2+ exchange. It is interesting that bradykinin, which stimulates the biosynthesis and secretion of catecholamine in adrenal chromaffin cells, plays a role in the termination of calcium-signal transduction through the stimulation of Ca2+ efflux from the cells.
منابع مشابه
[Possible role of a neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) on stimulus-secretion coupling in catecholamine neuron].
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide first isolated from ovine hypothalamic tissue. This peptide stimulates adenylate cyclase activation. However, few details were known of the function of this peptide on stimulus-secretion coupling in neuronal cells. The authors have investigated the role of PACAP on catecholamine biosynthesis and secretion using culture...
متن کاملControl of secretion by temporal patterns of action potentials in adrenal chromaffin cells.
Action potentials (APs) are the principal physiological stimuli for neurotransmitter secretion in neurons. Most studies on stimulus-secretion coupling have been performed under voltage clamp using artificial electrical stimuli. To investigate the modulatory effects of AP codes on neural secretion, we introduce a capacitance method to study AP-induced secretion in single cells. The action potent...
متن کاملLinopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors.
Adrenal chromaffin cells synthesize and release catecholamines and several other transmitters that play important physiological roles in the coordinated response to stress or danger. The main trigger for secretion is acetylcholine (ACh) released from splanchnic nerve terminals that activates nicotinic ACh receptors (nAChRs) on the chromaffin cells, causing membrane depolarization and Ca2+ entry...
متن کاملIntrathecal transplantation of cultured calf chromaffin cells attenuate sensory motor dysfunction in a rat model of neuropathic pain
The potential usefulness of chromaffin cells as a source of neuroactive agents for transplantation in the CNS is based on several promising features, including the diversity of biologically active neurotransmitters, neuropeptides and trophic factors produced by the cells. The purpose of this study was to test the possibility that motor as well as sensory dysfunction is reduced by cultured chrom...
متن کاملIntrathecal transplantation of cultured calf chromaffin cells attenuate sensory motor dysfunction in a rat model of neuropathic pain
The potential usefulness of chromaffin cells as a source of neuroactive agents for transplantation in the CNS is based on several promising features, including the diversity of biologically active neurotransmitters, neuropeptides and trophic factors produced by the cells. The purpose of this study was to test the possibility that motor as well as sensory dysfunction is reduced by cultured chrom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of medical investigation : JMI
دوره 46 1-2 شماره
صفحات -
تاریخ انتشار 1999